

This discussion paper is/has been under review for the journal Hydrology and Earth System Sciences (HESS). Please refer to the corresponding final paper in HESS if available.

Nonstationarity of low flows and their timing in the eastern United States

S. Sadri, J. Kam, and J. Sheffield

Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey, 08544 USA

Received: 26 January 2015 – Accepted: 9 February 2015 – Published: 5 March 2015

Correspondence to: J. Sheffield (justin@princeton.edu)

Published by Copernicus Publications on behalf of the European Geosciences Union.

HESSD

12, 2761–2798, 2015

Nonstationarity of low flows and their timing in the eastern US

S. Sadri et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Abstract

The analysis of the spatial and temporal patterns of low flows as well as their generation mechanisms over large geographic regions can provide valuable insights and understanding for climate change impacts, regional frequency analysis, risk assessment of extreme events, and decision-making regarding allowable withdrawals. We use nonparametric tests to identify abrupt and gradual changes in time series of low flows and their timing for 508 USGS streamflow gauging sites in the eastern US with more than 50 years of daily data, to systematically distinguish the effects of human intervention from those of climate variability. A time series decomposition algorithm was applied to 1 day, 7 day, 30 day, and 90 day annual low flow time series that combines the Box–Ljung test for detection of autocorrelation, the Pettitt test for abrupt step changes and the Mann–Kendall test for monotonic trends. Examination of the USGS notes for each site confirmed that many of the step changes and around half of the sites with an increasing trend were associated with regulation. Around a third of the sites with a decreasing trend were associated with a change of gauge datum. Overall, a general pattern of increasing low flows in the northeast and decreasing low flows in the southeast is evident over a common time period (1951–2005), even when discarding sites with significant autocorrelation, documented regulation or other human impacts. The north–south pattern of trends is consistent with changes in antecedent precipitation. The main exception is along the mid-Atlantic coastal aquifer system from eastern Virginia northwards, where low flows have decreased despite increasing precipitation, and suggests that declining groundwater levels due to pumping may have contributed to decreased low flows. For most sites, the majority of low flows occur in one season in the late summer to autumn, as driven by the lower precipitation and higher evaporative demand in this season, but this is complicated in many regions because of the presence of a secondary low flow season in the winter for sites in the extreme northeast and in the spring for sites in Florida. Trends in low flow timing are generally undetectable, although abrupt step changes appear to be associated with regulation.

HESSD

12, 2761–2798, 2015

Nonstationarity of low flows and their timing in the eastern US

S. Sadri et al.

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

1 Introduction

Low flows – the minimum flow in a river during the dry periods of the year – are an important part of the streamflow regime that have direct impacts on water supply, water quality, and ecosystem health (Bradford and Heinonen, 2008). Knowledge of low flow characteristics and generation mechanisms over large geographic regions is important for regional frequency analysis, risk assessment of extreme events, decision-making regarding allowable basin withdrawals and water quality, and understanding climate change impacts (Tallaksen and van Lanen, 2004). For example, in every state of the US, estimates of low flow statistics are needed for issuing and/or renewing of National Pollution Discharge Elimination System permits, as required by provisions in the Clean Water Act of 1977 (US Senate, 2002). Furthermore, low flow periods are critical to aquatic habitats due to potentially low dissolved oxygen concentrations and/or high pollutant concentration (US Senate, 2002). However, the study of low flow statistics and patterns have received little attention in comparison to droughts and floods (Kroll et al., 2004). Poff et al. (1997) emphasize the need of paying particular attention to low flows because they present critical stresses and opportunities for a wide array of riverine projects.

Low flows are generally controlled by subsurface flows sourced from groundwater that maintain flows during the dry periods of the year, such that low flow volumes are related to the physiological and geological make up of the area. However, our understanding of these low flow generating mechanisms is limited (Smakhtin, 2001), and is further compounded by the sensitivity of low flows to changes in climate, land use and human impacts on stream flow (Rolls et al., 2012). For example, large-scale teleconnections may play an important role in driving inter-annual to multi-decadal changes in low flows (e.g. Giuntoli et al., 2013).

In the eastern United States, both direct anthropogenic and climate influences may have impacted low flows, including land use change impacts via changes in subsurface flow and groundwater recharge, direct impacts on flows via reservoirs and

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

other streamflow management, and changes in precipitation and evaporation that have altered recharge. In particular:

1. In the US, more than 85 % of the surface runoff is artificially controlled and nearly 1 million km of rivers are affected by dams (Poff et al., 1997). While surface water covers only 4.5 % of the eastern US, the majority of streams have been flagged by the US Geological Survey (USGS) as regulated. The USGS estimates that the spatial extent of surface water increased by 1.3 % during 1973–2000, with most of this increase in the southern coastal plain and southern Florida coastal plain (USGS, 2012) and associated with reservoir developments required to meet the needs of the expanding population. Figure 1a shows the location of major dams in the eastern US (defined as those 50 feet or more in height, or with a normal storage capacity of 5000 ac ft ($\sim 6\,200\,000\,m^3$) or more, or with a maximum storage capacity of 25 000 ac ft ($\sim 30\,800\,000\,m^3$) or more, USACE, 2012). Generally dams and reservoirs are considered the largest man-made regulations on streamflow, but other sources include farm ponds, surface water extraction, inter-basin transfers, and wastewater treatment plant discharge (Rolls et al., 2012). Regulation generally introduces non-stationarity into low flow time series that impedes the development of regional or at-site frequency analysis models. In most instances, such models show a high standard error between modeled and observed quantiles (Kroll et al., 2004).
2. The eastern US has gone through significant land use change over the past several decades. For example, between 1973 and 2000, 8.2 % of the $23\,620\,000\,km^2$ of the northeast ecoregion and 8.9 % of the $30\,000\,000\,km^2$ of the southeast ecoregion experienced changes associated with active timber harvesting and replanting, which may have impacted low flows and related environmental and ecosystem well-being (USGS, 2012). Furthermore, in the expanding urbanized areas of the region with high levels of impervious ground, infiltration has decreased,

Nonstationarity of
low flows and their
timing in the eastern
US

S. Sadri et al.

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

which may have led to a decrease groundwater recharge and low flow volumes (USGS, 2013).

5

10

15

20

25

3. The region is one of the wettest parts of the US receiving 700–1600 mm of precipitation per year. However, due to population growth and associated increased use of surface and groundwater resources, the future is expected to bring water stress for this area (Averyt et al., 2013). Some of these changes are already being observed. For example, USGS (2013) reports on 3–10 km³ of depletion of unconsolidated and semi-consolidated sand and gravel aquifers of the east coast between 1900 and 2008. Overuse of surface water in turn does not allow recharge of groundwater leading to groundwater depletion. In parts of the eastern US, groundwater resources have become limited and hence municipal and industrial water users are increasingly relying on surface waters (e.g. Daniel and Dahlen, 2002). Changes in both surface water and groundwater use have impacts on low flows.
4. Precipitation has likely changed over the past several decades (Karl and Knight, 1998; Small et al., 2006). Evaporation may have changed due to increasing atmospheric demand from higher temperatures (e.g. Walter et al., 2004), although direct measurements of evaporation are limited in spatial and temporal coverage. Each of these changes may impact on low flows and in some cases may combine to exacerbate or counteract changes in low flows. Warmer temperatures may have also impacted winter-time low flows, via changes in snow (Burakowski et al., 2008) and river ice (Hodgkins et al., 2005).

Past evaluations of changes in low flows over the eastern US have mainly been within studies on the entire US and often with respect to mean and high flows. Douglas et al. (2000) estimated trends in both flood and 7 day low flows for three major geographic regions in the US (East, Midwest, and West) over two time periods: 1959–1988 and 1939–1988, and found evidence of upward trends in low flows across the Midwest, but not in the eastern US. Other studies have attempted to explain the general patterns

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

of low flow trends. For example, Small et al. (2006) analyzed trends in annual 7 day low flow, average, and high flows along with seasonal precipitation over individual basins in the US for 1948–1997. The number of sites shown to have statistically significant trends in low flows and fall precipitation in the eastern US was small and restricted to the south of Maine, western Pennsylvania, coastal areas of South Carolina, and western Florida. In the northeast and west of Pennsylvania, precipitation showed an increasing trend during the fall but not during the spring and the increase in fall precipitation appeared to result in an increase in low flows in the northeast areas. The only statistically significant decrease in the low flows was found in the south Atlantic-Gulf region, west of Florida, consistent with the findings from Lins and Slack (1999). However, no specific reason for this decreasing trend was given. McCabe and Wolock (2002) examined historic changes in streamflow, using the annual minimum, median, and maximum daily streamflow at 400 sites across the US during 1941–1999. They found an increase in annual minimum and median daily streamflow around 1970 that primarily occurred in the eastern US as a step change, rather than a gradual trend. Andreadis et al. (2006) used model simulations to examine trends in soil moisture, runoff, and drought characteristics over the US for the period 1915–2003. They found increasing runoff over parts of the northeast, which was most evident during winter months, with decreases in hydrological and agricultural drought, and drying trends in the summer in the southeast, with increases in drought. These changes were attributed to changes in precipitation, and they speculated that increasing drought in the southeast was associated with higher atmospheric demand due to warming. Although these studies are generally consistent for the eastern US they tend to focus on the spatial pattern of trends in 7 day low flows only, and were limited to earlier periods available at the time of the study. Furthermore, none of these studies considered the role of anthropogenic influences, such as land cover change or water withdrawals (Brown et al., 2013).

In this study, we analyze the temporal and spatial distribution of annual n day low flows in the eastern US to systematically distinguish the effects of human intervention

Nonstationarity of low flows and their timing in the eastern US

S. Sadri et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

[◀](#)

[▶](#)

[◀](#)

[▶](#)

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

**Nonstationarity of
low flows and their
timing in the eastern
US**

S. Sadri et al.

from those of climate variability and change. Often the best way to determine whether a river has been subject to anthropogenic influences, at least in terms of regulation, is to examine the site notes for the gauging station. However, site notes might not be available, complete, or accurate, and examining the notes for multiple sites can be unwieldy. Furthermore, whether a site is determined to be regulated or not is often based on high flows and not on low flows. Here, we develop an alternative approach that assumes that the impact of human activities can be detected in the streamflow data in a systematic way. This is generally more efficient and can complement site notes or compensate for errors in them. Low flow time series (and flows in general) can show 5 two general types of nonstationarity: gradually increasing or decreasing trends, and abrupt changes (Villarini et al., 2009) in the mean and/or variability. As McCabe and Wolock (2002) observe, the distinction between a gradual trend and a step change is important, particularly for climate-change impact studies, since climate change usually manifests as a trend and not a step change. We therefore assume that step changes in 10 the time series are indicative of an anthropogenic effect, and that gradual trends reflect a climate effect.

15

Our overall approach is to use nonparametric statistical tests to identify abrupt and gradual changes in the value and timing of n day low flows, and identify stationary segments of the time series. Furthermore we analyze the co-variability of low flows 20 with antecedent precipitation to understand the influence of changes in precipitation on changes in low flows. The paper is organized as follows: Sect. 2 describes the streamflow data and the methodology, including the use of three straightforward and already-established statistical methods, for identifying non-stationarity in annual low flow time series. The results on the systematic identification and characterization of 25 abrupt changes in low flow volumes and timing are presented in Sect. 3. The results on the variability and trends in are given in Sect. 4. Finally, we discuss the results, their attribution and implications, and present conclusions in Sect. 5.

[Title Page](#)[Abstract](#)[Introduction](#)[Conclusions](#)[References](#)[Tables](#)[Figures](#)[◀](#)[▶](#)[◀](#)[▶](#)[Back](#)[Close](#)[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)

2 Data and methods

2.1 Study area

Our study area covers the eastern US from Maine in the northeast to Florida in the southeast and westwards to the Appalachian Mountains and the Mississippi River in the south, and is based on the 20 ecoregions of the eastern US (USGS, 2012). According to the USGS (2012), 52.4 % of the eastern ecoregion in 2000 was forest. However, both forests and agriculture have been in decline since 1973 and instead, urbanization has increased and continues to increase. Most land cover change has occurred in the southeast and is associated with forest harvesting, agricultural abandonment, and development (USGS, 2012). Changes in the northeast have been mostly associated with timber harvesting. Changes in the north Central Appalachian region have been more heterogeneous and include examples of non-mechanical transitional change. Unlike the northeastern Coastal Plain, the southern Florida Coastal Plain has not experienced loss of agricultural land, but the largest decrease in surface water and significant loss of wetlands (-2.4 %). Changes in surface water in the southern Coastal Plain have primarily been due to urbanization (USGS, 2012).

The eastern US is wettest part of the country (Small et al., 2006), with average precipitation of about $1100 \text{ mm year}^{-1}$, with maxima along the coastal plain and the mountains of the Appalachians. Part of the precipitation in the northeast falls as snow in the wintertime (Hayhoe et al., 2007). The Appalachian Mountains largely shield New York City and Philadelphia from lake-effect snow (Colby, 2008). The eastern seaboard is susceptible to tropical storms and hurricanes during the Atlantic hurricane season, normally running from June to end of November, which enhance precipitation across southern and eastern parts, and play a role in alleviating drought (Kam et al., 2013). The El Niño-southern Oscillation (ENSO) alters precipitation patterns across the southeast (Colby, 2008). Coastal extra-tropical cyclones bring the bulk of the wintertime precipitation to that region, forming along the natural temperature gradient of the Gulf stream before moving up the coastline (Gurka et al., 1995). Seasonally, there are slight

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

changes in the precipitation distribution through the year. For example, Burlington, Vermont has a summer maximum and a winter minimum while Portland, Maine has a fall and winter maximum, with a summer minimum in precipitation. The northeast does not have any principal aquifer and, therefore, the water supply is mainly derived from surface waters, which are heavily regulated to meet the water supply demand of urbanized areas such as New York City. In contrast, the southeast, including Florida, lies on active aquifers (USGS, 2009). Projections of future climate indicate an increase in precipitation over the eastern US (EPA, 2008) with consequences for changes in low flows across the region.

10 2.2 Streamflow data

Initially, 4878 sites with daily streamflow records were retrieved from the USGS National Water Information System (NWIS) (USGS, 2014) for the eastern US as defined by Hydrological Unit Codes (HUC) of 01, 02, or 03. Previous studies on low flows (e.g. Kroll et al., 2002, 2004; Douglas et al., 2000) have used the USGS Hydro-Climatic 15 Data Network (HCDN; Lins, 2012), in part because anthropogenic influences at these sites are deemed to be negligible, but as such, is limited to only several tens of stations across the domain. Of the original 4878 sites, 2811 were active in the 2000's or later (Fig. 1b). Among these, 1092 sites had at least 30 years worth of daily data, 740 sites had 50 years or more, and 324 sites had 75 years or more. We used sites with at 20 least 50 years of data as a balance between having enough of data at each site to identify long-term changes and the need to have many sites to characterize the spatial pattern of changes. We included only sites that did not have any missing years of daily data. This reduced the number of sites to 508 (Fig. 1c). The drainage area of the candidate sites ranges from very small ($5\text{--}100\text{ km}^2$) to large ($38\,000\text{--}67\,000\text{ km}^2$), with the majority of areas between $200\text{--}500\text{ km}^2$ and these are spread fairly uniformly 25 across the study area. The majority of the 508 sites are clustered on the eastern flank of the Appalachians and the northeast from eastern Virginia to New Hampshire. There

[Title Page](#)[Abstract](#)[Introduction](#)[Conclusions](#)[References](#)[Tables](#)[Figures](#)[◀](#)[▶](#)[◀](#)[▶](#)[Back](#)[Close](#)[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)

is also a cluster of smaller catchments in central Florida. The mean, median, minimum and maximum record lengths are 74, 92, 50, and 120, respectively.

Based on the USGS site notes (available on the NWIS website), we identified sites that are flagged as: regulated, partially regulated, flow below the rating curve limit, 5 dam failure, affected by urbanization, change of base discharge, and change of gauge datum. Figure 1d shows the location, flag type, and the number of the sites under each flag. Almost half of the sites have no flag and these are located throughout the domain. The majority of regulated or partially regulated sites are concentrated in the northeast, but this is also where the majority of all sites are located. The sites in the 10 mid-Atlantic states are generally more affected by urbanization and change of gauge datum. Overall, 271 sites out of 508 sites are somehow affected. In the results section, we show how the results of our statistical methods compare with the USGS site flags.

2.3 Statistical methods

We analyze four variants of low flows based on different time scales, to understand 15 how non-stationarity is dependent on the time scale as the data become smoother, with implications for the detection of non-stationarity. The 1 day minimum low flow, Q_1 , is the annual minimum daily streamflow. The other three variants, Q_7 , Q_{30} , Q_{90} , are obtained by applying the same analysis to 7, 30, and 90 day moving average versions of the time 20 series. Together, we refer to the four low flow variables as the n day minimum flows. Q_7 (dry weather flow) is the most widely used low flow statistic in the US (Kroll et al., 2004; Smakhtin, 2001), but the others are important for different applications, such as Q_1 for ecological assessments and Q_{90} for reservoir operations. We also calculate the day of the year of low flows and use this to identify the primary (and in some regions the secondary) low flow season, as well as any long-term changes in timing.

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

2.3.1 Identification of stationary time series

A sequence of random variables, Y , is stationary if the distribution of the sequence is independent of the choice of starting point (Ruppert, 2011). Determining stationarity of a time series is not straightforward and in practice, it is common to look at restricted measures of stationarity. A time series is defined as weakly stationary if it satisfies three criteria:

$$E(Y_i) = \mu, \quad (\forall i) \quad (1a)$$

$$\text{Var}(Y_i) = \sigma^2, \quad (\forall i) \quad (1b)$$

$$\text{Corr}(Y_i, Y_j) = \rho(|i - j|), \quad (\forall i, \forall j) \quad (1c)$$

10 This means that for a weakly stationary variable, the mean and variance do not change with time and the correlation between two values depends only on the lag (the time between values). However, weak stationarity does not apply to the quantiles and higher moments of the distribution (Ruppert, 2011). Visual inspection of the time series and the changes therein can be very helpful in determining stationarity. A time series plot of a stationary series should show oscillation around some fixed level, a phenomenon called reversion to the mean (Ruppert, 2011).

15

We apply three tests to identify weak stationarity: (1) the Mann–Kendall test (Kendall, 1975), which tests for increasing or decreasing trends; (2) the Pettitt test (Pettitt, 1979), which tests for abrupt changes or change points; and (3) the Ljung–Box test (Ljung and Box, 1978), which tests for autocorrelation. An identified change in the mean by either of the first two tests would rule out stationarity, except in the case of autocorrelated data, for which the Mann–Kendall test will characterize too many sequences of the time series as having a trend (Douglas et al., 2000). Therefore, analysis of autocorrelation is carried out before conducting the Mann–Kendall test. Even when a site is identified as nonstationary, further analysis is required to understand the overall regime of the data at such a site. For example, the time series may have two separate stationary regimes with one change point in between or an overall trend. We then assume that the change

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

year corresponds to human intervention, which is generally borne out by investigating the site notes.

2.3.2 Decomposition algorithm

The three statistical tests (Ljung–Box, Pettitt and Mann–Kendall) were combined into a recursive algorithm to identify non-stationarity in the low flow time series and decompose the series into stationary sub-series. In the first step of the algorithm, a Ljung–Box test with length 20 years was applied to the entire time series of each site, and sites with significant autocorrelation (p value < 0.05) were identified. We then applied the Mann–Kendall (MK) test on the remaining sites to identify statistically significant trends in the data. The series were categorized as having no trend, negative trend, or positive trend. For the sites with significant autocorrelation, we applied the Pettitt test to identify step changes. If a significant change is found, the series is split into two parts either side of the step change. Each part is assumed to be a new series at the same location, and if it has a record length of 30 years or more, the decomposition algorithm is applied again. If the length is less than 30 years, the site is removed from further consideration. If a statistically significant step change is not identified, we assume that the autocorrelation is a reflection of management effects and the site is excluded from further consideration. The series and sub-series are assigned categories as follows:

1. Category 1: Non-autocorrelated site with no trend (MK = 0);
2. Category 2: Non-autocorrelated site with a statistically significant decreasing trend (MK = -1);
3. Category 3: Non-autocorrelated site with a statistically significant increasing trend (MK = 1);
4. Category 4: Autocorrelated site with statistically significant step change, time series split and the sub-series re-categorized recursively;

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

5. Category 5: Autocorrelated site with no step change. Site removed from further analysis.

3 Stationarity results

3.1 Categorization of sites

5 Figure 2 shows the spatial distribution and the number of sites in each category after the first recursive level of the decomposition algorithm. The results for all n day low flow metrics are presented for the available length of record at each site, which ranges between 1891 and 2011. No site has a record length less than 50 years and no site has any gap in the n day low flow series. As we move from Q_1 to Q_{90} , the low flow values 10 are calculated from smoother time series values and therefore a larger number of sites appear stationary (category 1) and the number of sites identified using the Pettitt test as having an abrupt shift in the time series (category 4) decreases. The algorithm re-applies the Pettitt test to category 4 sites to identify useable sub-series. For example, 15 the Q_1 time series of 155 sites are split into two parts, which are subjected to further categorization.

Figure 3 summarizes the time periods that were identified as useable at each step of the recursive algorithm for all sites for Q_1 . The light blue lines represent the original record length for each site. The vertical axis shows the site number from 1 to 508 ordered from the lowest to highest latitude. Therefore, site 1 is the most southerly 20 and site 508 is the most northerly. The left panel of Fig. 3 shows the record length of sites, which, in the first step of categorization, had no significant autocorrelation. These sites are colored according to their MK trend value: 0 (no significant trend), -1 25 (significant negative trend), or 1 (significant positive trend). The middle panel again shows the original record length for each site in light blue, but highlights the sites that were identified with an abrupt step change by the Pettitt test and were split into two parts. For each part that exhibits no autocorrelation, the trend values were calculated.

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

The right panel shows the parts of the time series that were recovered in the next step of the decomposition algorithm. As long as the record length is greater than or equal to 30 years the algorithm is applied recursively on the remaining parts of the time series. The number of sites shown in the right panel is small but their data are still useful for 5 subsequent analysis.

3.2 Comparison with USGS flags

Table 1 shows the breakdown of the number of sites in each category and the relation to USGS flags for Q_1 and Q_{90} , and indicates that in every category, anthropogenic changes are documented by the USGS. For Q_1 , the majority of sites in categories 4 10 (64 %; step change), and 5 (56 %; significant autocorrelation) are flagged by the USGS as somehow affected. This suggests that the algorithm has some skill in identifying altered flow series. However, there are also many sites in category 1 (45 %; no trend), 2 (34 %; decreasing trend) and 3 (67 %; increasing trend) that are also flagged (see Fig. 4) suggesting that anthropogenic impacts for these sites are minimal and/or are 15 overwhelmed by any climate or land use induced changes. The fact that the majority of stationary sites (category 1) are not flagged is encouraging. Figure 1d, for example, shows all the sites from each of the 5 categories that have no flag for Q_1 . For Q_1 , 237 out of 508 sites are not flagged but only 121 of these 237 sites show absolute stationarity (category 1) and the rest are somehow non-stationary.

20 From Table 1 we observe that:

1. if a site is flagged and its low flow series has a decreasing trend, this is mostly associated with a change of gauge datum;
2. if a site is flagged and its low flow series has an increasing trend, this is mostly related to regulation or a change of gauge datum;
- 25 3. if a site is flagged and it exhibits a step change, this is mostly associated with regulation, a change of gauge datum, or possibly urbanization;

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

4. if a site is in category 5 (not considered further due to significant autocorrelation),
it may be regulated or its gauge datum has changed;

5. if a site shows no trend but is still flagged, it may be regulated or its gauge datum
changed, but the statistics do not indicate a trend. This suggests that the impact
of regulation was either minimal or good management practices have been put
in place. The majority of these sites are located in the upper Mid-Atlantic in the
states of New York, New Jersey, and Virginia.

Dam failure, flow below the rating curve limit, or change of base discharge and even
urbanization do not appear to have a significant impact on low flows for the sites
considered.

3.3 Variability in year of abrupt change

For sites that were identified by the Pettitt test as having an abrupt change, Fig. 5a
shows the variability of the year of change for Q_n . Most of the changes occurred be-
tween 1962 and 1986, and as discussed above, most of these are associated with
15 regulation and a change of gauge datum. The spatial distribution of changes indicates
that stream regulation began in the northeast before spreading to the southeast. The
Pettitt test tends to identify significant changes away from the either ends of the time se-
ries, and so may not identify changes in the earlier or later part of the record. However,
earlier or later step changes are identified in the second recursion of the decomposi-
20 tion algorithm.

We further examined the consistency of the change year among the Q_n series, with
the expectation that abrupt changes caused by regulation would be identified for the
same year across all or most Q_n time series. Figure 5b shows the spatial distribution
and the number of sites with a consistent year of change among the Q_n . Out of 176
25 sites whose time series were identified as having a step change by the Pettitt test,
82 (almost half) showed the same change year for 3 out of 4 Q_n series. Only 7 sites
showed the same change year for all Q_n . Although we have identified the change year

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

for all Q_n , the results for Q_1 may be the most appropriate for identifying a change since they are based on the original time series data.

4 Variability and trends in low flows and timing

4.1 Trends in low flows

5 We identified a time period (1959–2005) common to all sites for which they have use-
able data, and calculated statistics of Q_n , including the trend, and the consistency of
trends among Q_n values. The MK trends for Q_n for the sites that were categorized as
1, 2, or 3 by the decomposition algorithm are shown in Fig. 6a. The sites with signif-
icant trends tend to occur in all Q_n (e.g. the sites in Florida). Sites with lower trend
10 magnitudes tend to become non-significant ($MK = 0$) as we move from Q_1 to Q_{90} (e.g.
the two sites in the northeast in Maine). Some sites to the east of the Mississippi River
do not have significant trends for Q_1 but show a significant decreasing trend for Q_{90} .
Overall, the northeastern sites show increasing trends in low flows and the southeast
sites show decreasing trends.

15 A summary of the consistency of trends across n day low flows is shown in Fig. 6b.
208 sites (41 % of the sites) have the same trend, such that the Q_n series are all
increasing, decreasing, or not changing. 162 sites (32 %) agree on the sign of trend for
three out of four of the Q_n trends, and 87 sites (17 %) agree for 2 out of 4 of the Q_n
20 trends. Overall, the consistency in trends among the Q_n series is generally uniformly
distributed across the domain.

25 Figure 7 shows the spatial pattern of the MK trend test values for Q_1 when autocor-
relation is ignored (top left panel) and if we remove sites with significant autocorrelation
(top right panel). The gray colored sites in the right panel are those with significant
autocorrelation. In both cases, the pattern of increasing trend in low flows in the north-
east and a decreasing trend in the southeast is apparent. However, ignoring the effect
of autocorrelation may give rise to misleading results by showing a denser pattern of

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

significant trends. The bottom left panel shows the results when sites that have USGS flags are also excluded, i.e. for sites without documented anthropogenic impacts. The attribution of trends at these sites is therefore likely related to climate variability/change and/or land use change, rather than a direct anthropogenic impact on the low flows.

5 4.2 Variability in low flow timing

Figure 8 summarizes the distribution of the onset of the low flow season for Q_1 , where the first season is defined as the 4 month period that contains the majority of low flow occurrences (top panels) and the second season as the 4 month period that contains the majority of the remaining low flows (bottom panels). The left panels show the onset 10 month of the season and the right panels show the probability of the onset season in that month. If the onset time of the low flow season for a site occurs 70 to 100 % in a specific month, that site is assumed to have only one low flow season. For Q_1 , 353 sites out of 395 (almost 90 %) sites fit in this category. For sites with one low flow season, the onset of the season changes from north to south. Most of the sites north of 15 North Carolina have low flow seasons starting in July, which is generally driven by the slight decline in precipitation during the autumn as well as the increased evaporation during the summer (Small et al., 2006). In Florida the season starts in April–May. For coastal sites, the season starts earlier (mostly in June), and for sites in the southwestern part of the domain, the season starts mostly in September–October.

20 The sites that have low flow events occurring 40–70 % of the time in one month and 20–40 % of the time in a different month are characterized as having two low flows seasons. These sites are mostly in Florida, and along the coastline of Georgia, South and North Carolina, New York, New Jersey, and Maine and their second season occurs mostly in fall. For New York, New Jersey, and some sites along the west coastline of 25 Florida, the second low flow season mostly starts in November and December. Sites near the Gulf of Mexico and some sites in North Carolina have second low flow seasons starting in April. The second low flow season for the far northeast sites begins in

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

December or January and can be related to freezing conditions that may store water as snow and river ice.

4.3 Changes in low flow timing

To determine whether low flow timing has changed over time, we examined sites with 5 one low flow season as defined as 70 % of low flow occurrences in the same season. Both the MK trend and Pettitt tests were applied within the 4 month season of Q_1 and Q_7 low flows. For Q_1 , for example, 395 sites were initially identified (that showed increasing, decreasing, or no trend in low flow volumes in the first step of the decomposition algorithm). 43 sites were removed because their low flow season occurs less than 70 % 10 of the time in one season and an additional 17 sites were removed due to significant autocorrelation. Out of the remaining 335 sites, 13 sites showed a decreasing (earlier) trend in timing and were mostly in Pennsylvania and New York states (Fig. 9). The MK test for Q_7 timings showed 11 sites with a decreasing trend, of which 8 overlapped with those whose for Q_1 . All 8 sites had low flow seasons starting in July. Half of the 8 sites 15 are regulated or partially regulated. For Q_7 , 5 of the sites were identified by the Pettitt test (5 % significance) to have a significant downward step change (Fig. 9).

Overall, the results from the Pettitt test are consistent with those from the MK test (Fig. 9), with 40 % of the sites identified by the Pettitt test having partial regulation and the rest without any regulation. Interestingly, these sites show no trend in the low flow 20 volumes suggesting that the trend towards earlier timing of low flows at these sites is driven by climate. The right panels in Fig. 9 show the average month in which most of low flows used to occur in the earlier part of the record. For Q_7 , for example, the low flows used to occur in month 8 (August) but shifted earlier by at least 2 weeks, likely driven by a shift of low precipitation from the late to mid summer. Although these 8 sites did not show a trend in low flow volumes, the overall trend for the northeast is 25 an increasing trend in low flow volumes suggesting that early summer low precipitation might also be increasing. More investigation is required to confirm whether low precip-

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

itation is happening earlier in summer, for example during May and June, and whether the amount is increasing.

5 Discussion and conclusions

5.1 Attribution of trends in low flows

5 We found spatially coherent patterns of increases in low flows in the northeast and decreases in the southeast, which was robust to the presence of USGS flags and autocorrelation in the time series, despite the smaller number of sites. The pattern of increasing low flows in the northeast is consistent with regional scale studies (e.g. Hodgkins and Dudley, 2011) and are consistent with the increases in 7 day low flows
10 and fall precipitation shown in Small et al. (2006) that focused on a smaller set of sites across the eastern US from the HCDN. Several other studies (e.g. Douglas et al., 2000; McCabe and Wolock, 2002; Hayhoe et al., 2007; Andreadis and Lettenmaier, 2006) have identified an overall increasing trend in precipitation over the past 50 years, and a decreasing pattern in soil moisture drought over the much of the US including
15 the northeast (Andreadis and Lettenmaier, 2006). Therefore, an increase in low flow volumes in the northeast is consistent with the overall shift to wetter conditions. The generally decreasing trends in the southeast are also consistent with the results from Small et al. (2006) and Lins and Slack (1999), which is despite an overall increase in precipitation in the region.

20 To understand the attribution of these trends more comprehensively, Fig. 10 shows the Q_7 trend magnitude and the antecedent precipitation for the previous 180 days. This period was chosen as it provides the highest correlation with low flow volumes (Kam et al., 2015), although the results with 150 and 90 days are similar. The precipitation data are taken from the long-term precipitation dataset of Livneh et al. (2013) and are
25 averaged over the basin corresponding to each site. The similarity between the trends in low flows and antecedent precipitation is striking with a clear increasing trend in

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

the north and decrease in the south, although many of the trends are not statistically significant.

The main disparity is in coastal plains of eastern Virginia, Maryland and northwards to Maine, where Q_7 low flows have decreased but antecedent precipitation is increasing (both often statistically significant). The reason for this is unclear, but groundwater is likely playing a role across the coastal plain aquifer of the mid-Atlantic states and up into New England (Dudley and Hodgkins, 2013) either via changes in recharge or indirectly through anthropogenic impacts. Groundwater pumping has reduced levels in the north Atlantic Coastal Plain aquifer system by tens of meters (e.g. Konikow, 2013; USGS, 2006) and has likely reduced discharge to streams in the northeast (e.g. Pucci and Pope, 1995; Brutsaert, 2010; Barlow and Leake, 2012). Similarly, overuse of groundwater resources in the southeast (Konikow, 2013) may be contributing to decreases in low flows across the region (e.g. Bosch et al., 2003; Opsahl et al., 2007; Brutsaert, 2010).

Increases in evaporation (Walter et al., 2004; Nolan et al., 2007; Huntington and Billmire, 2014) may have also led to declines in groundwater recharge and streamflow (Hodgkins and Dudley, 2011), and potentially cancelled out the overall increases in precipitation across much of the US (Andreadis and Lettenmaier, 2006). Figure 10 also shows an estimate of the trend in late summer/early fall potential evaporation based on the NLDAS2 dataset of Xia et al. (2012). Potential evaporation has increased over the eastern US with statistically significant trends over much of the mid-Atlantic states and the southeast. This suggests that increasing atmospheric demand in the southeast may have exacerbated declines in low flows, and this may have offset increasing precipitation somewhat in the northeast. Changes in land use may also explain trends in both regions, whereby land abandonment in the northeast and forest harvesting and urban development in the southeast may have contributed to the respective trends in each region (Cho et al., 2009; Payne et al., 2005; USGS, 2012), although attribution is difficult.

Nonstationarity of low flows and their timing in the eastern US

S. Sadri et al.

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

The analysis of trends in timing of low flows showed one cluster of sites with a trend to earlier timing. These sites are mostly in central and west Pennsylvania, and central southern New York. The reasons for the changes are unclear, but may be related to regulation and possibly a shift in the low precipitation season to earlier in the summer.

5 The timing of low flows in the other parts of the domain has not changed based on a 5 % significance level.

5.2 Conclusions

This study has examined the presence of non-stationarity in low flows across the eastern US in terms of volumes and timing. We focused on the full period of available data

10 at each site to identify abrupt shifts that may be associated with management, in particular dam construction, and gradual trends that may be an impact of climate change, land use change or surface/ground water withdrawals. A decomposition algorithm was also used to identify useable sub-series of the data that could then be further analyzed for trends. Comparison with USGS site flags indicate that the majority of sites with
15 identified step changes and increasing trends are regulated in some way, with some associated with a change of stream gauge datum or urbanization. For sites with decreasing or no trends, the minority have USGS flags and these tend to be for a change in gauge datum height. This implies that our approach is generally capable of identifying sites with documented regulation, but that these changes do not always manifest in
20 a detectable change in the low flow time series. This may be because the documented regulation or other change may not have an impact or that the signal is small compared to the variability in the time series. This is particularly the case for higher low flow metrics such as Q_{90} , for which the regulation is generally less detectable. For sites with documented regulation but no detectable signal, it may be that the USGS flags relate
25 more to high flows than low flows, or that the sites are well managed in terms of low flows. For example, flows are often artificially elevated above the natural levels of low flow to create “anti-droughts” to manage the restoration of river systems (Bunn et al., 2006).

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

Several outstanding questions remain, most importantly what are the low flow generating mechanisms across the eastern US and what are the drivers of long-term changes in the volumes and timing. Potential mechanisms include, but are not limited to: changes in antecedent precipitation and teleconnections with large-scale climate (e.g. the North Atlantic Oscillation; Kam et al., 2015), land use change, surface and groundwater abstraction, and streamflow regulation. The results of this study suggest that low flow variability in the eastern US is driven by a mixture of climatic and anthropogenic effects, with suggestions that changes in climate have played a role in both the northeast and southeast. However, definitive attribution will require detailed analysis of these competing factors and possibly carefully crafted modeling studies.

The results of this study can help in understanding changes in low flows across the eastern US, and the impact of anthropogenic and natural changes. It can therefore help inform water management, and restoration of stream flows and aquatic habitats. The methods are readily transferable to other parts of the US and globally, given long enough time series of daily streamflow data.

Author contributions. S. Sadri and J. Sheffield conceived the study. S. Sadri performed the analysis with help from J. Kam. S. Sadri prepared the manuscript with contributions from the other authors.

Acknowledgements. This work was supported by the USGS (G11AP20215) and NOAA (NA14OAR4310130 and NA14OAR4310218).

Nonstationarity of low flows and their timing in the eastern US

S. Sadri et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

[◀](#)

[▶](#)

[◀](#)

[▶](#)

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Nonstationarity of low flows and their timing in the eastern US

S. Sadri et al.

Andreadis, K. M. and Lettenmaier, D. P.: Trends in 20th century drought over the continental United States, *Geophys. Res. Lett.*, 33, 1–4, 2006.

Averyt, K., Meldrum, J., Caldwell, P., Sun, G., McNulty, S., Huber-Lee, A., and Madden, N.: 5 Sectoral contributions to surface water stress in the coterminous United States, *Environ. Res. Lett.*, 8, 035046, doi:10.1088/1748-9326/8/3/035046, 2013.

Barlow, P. M. and Leake, S. A.: Streamflow depletion by wells – understanding and managing the effects of groundwater pumping on streamflow, US Geological Survey Circular, Reston, VA, USA, 1376, 84 pp., 2012.

Bosch, D. D., Lowrance, R. R., Sheridan, J. M., and Williams, R. G.: Ground water storage effect 10 on streamflow for a Southeastern Coastal Plain watershed, *Ground Water*, 41, 903–912, doi: 10.1111/j.1745-6584.2003.tb02433.x, 2003.

Bradford, M. and Heinonen, J.: Low flows, instream flow needs and fish ecology in small streams, *Can. Water Resour. J.*, 33, 165–180, 2008.

Brown, T. C., Foti, R., and Ramirez, J. A.: Projected freshwater withdrawals in the United States 15 under a changing climate, *Water Resour. Res.*, 49, 1259–1276, doi:10.1002/wrcr.20076, 2013.

Brutsaert, W.: Annual drought flow and groundwater storage trends in the eastern half of the United States during the past two-third century, *Theor. Appl. Climatol.*, 100, 93–103, 2010.

Bunn, S. E., Thoms, M. C., Hamilton, S. K., and Capon, S. J.: Flow variability in dryland rivers: 20 boom, bust and the bits in between, *River Res. Appl.*, 22, 179–186, 2006.

Cho, J., Barone, V. A., and Mostaghimi, S.: Simulation of land use impacts on groundwater levels and streamflow in a Virginia watershed, *Agr. Water Manage.*, 96, 1–11, 2009.

Colby, F. P.: Mesoscale snow bands in an ocean-effect snowstorm, Tech. rep., University of 25 Massachusetts Lowell, Lowell, MA 01854, 2008.

Cox, D. R. and Stuart, A.: Some quick sign tests for trend in location and dispersion, *Biometrika*, 42, 80–95, 1955.

Daniel, C. and Dahlen, P.: Preliminary hydrogeologic assessment and study plan for a regional 30 ground-water resource investigation of the Blue Ridge and Piedmont Provinces of North Carolina, Investigations Report 02-4105, USGS, Raleigh, NC, USA, 2002.

Douglas, E. M., Vogel, R. M., and Kroll, C. N.: Trends in floods and low flows in the United States: impact of spatial correlation, *J. Hydrol.*, 240, 90–105, 2000.

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

Nonstationarity of low flows and their timing in the eastern US

S. Sadri et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Dudley, R. W. and Hodgkins, G. A.: Historical groundwater trends in northern New England and relations with streamflow and climatic variables, *J. Am. Water Resour. As.*, 49, 1198–1212, 2013.

EPA Climate Change Division: Precipitation and storm changes, available at: www.epa.gov/climatechange/science/indicators/weather-climate/index.html (last access: 15 November 2014), 2008.

Giuntoli, I., Renard, B., Vidal, J.-P., and Bard, A.: Low flows in France and their relationship to large-scale climate indices, *J. Hydrol.*, 482, 105–118, 2013.

Gurka, J. J., Auciello, E. P., Gigi, A. F., Waldstreicher, J. S., Keeter, K. K., Businger, S., and Lee, L. G.: Winter weather forecasting throughout the eastern United States. Part II: An operational perspective of cyclogenesis, *Weather Forecast.*, 10, 21–41, 1995.

Hayhoe, K., Wake, C. P., Huntington, T. G., Luo, L., Schwartz, M. D., Sheffield, J., Wood, E., Anderson, B., Bradbury, J., Degaetano, A., Troy, T. J., and Wolfe, D.: Past and future changes in climate and hydrological indicators in the U.S. Northeast, *Clim. Dynam.*, 28, 381–407, 2007.

Hodgkins, G. A. and Dudley, R. W.: Historical summer base flow and stormflow trends for New England rivers, *Water Resour. Res.*, 47, W07528, doi:10.1029/2010WR009109, 2011.

Hodgkins, G. A., Dudley, R. W., and Huntington, T. G.: Changes in the number and timing of days of ice-affected flow on northern New England rivers, *Climatic Change*, 71, 319–340, doi:10.1007/s10584-005-5926-z, 2005.

Huntington, T. G. and Billmire, M.: Trends in precipitation, runoff, and evapotranspiration for rivers draining to the Gulf of Maine in the United States, *J. Hydrometeorol.*, 15, 726–743, 2014.

Kam, J., Sheffield, J., Yuan, X., and Wood, E. F.: The influence of Atlantic tropical cyclones on drought over the Eastern U.S. (1980–2007), *J. Climate*, 26, 3067–3086, doi:10.1175/JCLI-D-12-00244.1, 2013.

Kam, J., Sadri, S., and Sheffield, J.: Changes in the low flow regime over the Eastern United States (1962–2011): variability, trends, and attributions, *Climatic Change*, in review, 2015.

Karl, T. R. and Knight, R. W.: Secular trends of precipitation amount, frequency, and intensity in the United States, *B. Am. Meteorol. Soc.*, 79, 231–241, 1998.

Kendall, M. G.: *Rank Correlation Methods*, Charles Griffin, London, UK, 202 pp., 1975.

Nonstationarity of low flows and their timing in the eastern US

S. Sadri et al.

Konikow, L. F.: Groundwater depletion in the United States (1900–2008): US Geological Survey Scientific Investigations Report 2013-5079, 63 pp., available at: <http://pubs.usgs.gov/sir/2013/5079> (last access: 15 November 2014), 2013.

Kroll, C. and Vogel, R. M.: Probability distribution of low streamflow series in the United States, *J. Hydrol. Eng.*, 7, 137–146, 2002.

Kroll, C., Luz, J., Allen, B., and Vogel, R. M.: Developing a watershed characteristics database to improve low streamflow prediction, *J. Hydrol. Eng.*, 9, 116–125, 2004.

Lins, H.: USGS Hydro-Climatic Data Network 2009 (HCDN-2009): US Geological Survey Fact Sheet 2012-3047, 4 pp., available at: <http://pubs.usgs.gov/fs/2012/3047/> (last access: 15 November 2014), 2012.

Lins, H. and Slack, J. R.: Streamflow trends in the United States, *Geophys. Res. Lett.*, 26, 227–230, 1999.

Livneh, B., Rosenberg, E. A., Lin, C., Nijssen, B., Mishra, V., Andreadis, K. M., Maurer, E. P., and Lettenmaier, D. P.: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: update and extensions, *J. Climate*, 26, 9384–9392, 2013.

Ljung, G. and Box, G.: On a measure of lack of fit in time series models, *Biometrika*, 65, 297–303, 1978.

McCabe, G. J. and Wolock, D. M.: A step increase in streamflow in the conterminous United States, *Geophys. Res. Lett.*, 29, 1–4, 2002.

Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P., and Stouffer, R. J.: Stationarity is dead: whither water management?, *Science*, 319, 573–574, 2008.

Opsahl, S. P., Chapal, S. E., Hicks, D. W., and Wheeler, C. K.: Evaluation of ground-water and surface-water exchanges using streamflow difference analyses, *J. Am. Water Resour. As.*, 43, 1132–1141, doi:10.1111/j.1752-1688.2007.00093.x, 2007.

Payne, D. F., Rumman, M. A., and Clarke, J. S.: Simulation of ground-water flow in coastal Georgia and adjacent parts of South Carolina and Florida – Predevelopment, 1980, and 2000, Scientific Investigations Report 2005-5089, US Geological Survey, Reston, VA, USA, 91 pp., 2005.

Pettitt, A. N.: A non-parametric approach to the change-point problem, *Appl. Stat.-J. Roy. St. C.*, 28, 126–135, 1979.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestgaard, K. L., Richter, B. D., Sparks, R. E., and Stromberg, J. C.: The natural flow regime: a paradigm for river conservation and restoration, *Bioscience*, 47, 769–784, 1997.

Pucci, A. A. and Pope, D. A.: Simulated effects of development on regional ground-water/surface-water interactions in the northern Coastal Plain of New Jersey, *J. Hydrol.*, 167, 241–262, 1995.

5 Rolls, R. J., Leigh, C., and Sheldon, F.: Mechanistic effects of low-flow hydrology on riverine ecosystems: ecological principles and consequences of alteration, *Freshwater Sci.*, 31, 1163–1186, 2012.

10 Ruppert, D.: *Statistics and Data Analysis for Financial Engineering*, Springer Texts in Statistics, Springer, New York, USA, 2011.

Sadri, S. and Burn, D. H.: A Fuzzy C-Means approach for regionalization using a bivariate homogeneity and discordancy approach, *J. Hydrol.*, 401, 231–239, 2011.

15 Smakhtin, V. U.: Low flow hydrology: a review, *J. Hydrol.*, 240, 147–186, 2001.

Small, D., Islam, S., and Vogel, R. M.: Trends in precipitation and streamflow in the eastern U.S.: paradox or preception?, *Geophys. Res. Lett.*, 33, 1–4, 2006.

20 Tallaksen, T. and Van Lanen, H. A.: *Hydrological Drought, Processes and Estimation Methods for Streamflow and Groundwater*, Vol. 48, 580 pp., Elsevier Science, Amsterdam, the Netherlands, 2004.

25 US Army Corps of Engineers: available at: <http://geo.usace.army.mil/pgis/f?p=397:12> (last access: 15 November 2014), 2012.

US Senate: Federal Water Pollution Control Act, available at: www.epw.senate.gov/water.pdf (last access: 15 November 2014), 2002.

30 USDA Forest Service: Climate Change and Water Issues for the Eastern US, Tech. rep., USDA, Portland, OR, USA, 2010.

USGS: Sustainability of the Ground-Water Resources in the Atlantic Coastal Plain of Maryland, USGS Fact Sheet, USGS, Baltimore, MD, USA, 2006–2009, 2 pp., 2006.

USGS: Groundwater atlas of the United States, available at: <http://pubs.usgs.gov/ha/ha730/> (last access: 15 November 2014), 2009.

USGS: Land cover change in the eastern United States, available at: <http://landcovertrends.usgs.gov/east/regionalSummary.html> (last access: 15 November 2014), 2012.

USGS: Groundwater depletion in the United States (1900–2008), Scientific Investigation Report 2013-5079, US Department of the Interior, US Geological Survey, Reston, Virginia, 2013.

Nonstationarity of low flows and their timing in the eastern US

S. Sadri et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

USGS: National Water Information System data available on the World Wide Web (Water Data for the Nation), available at: <http://waterdata.usgs.gov/nwis/>, 15 November, 2014.

Villarini, G., Smith, J. A., Serinaldi, F., Bales, J., Bates, P. D., and Krajewski, W. F.: Flood frequency analysis for nonstationary annual peak records in an urban drainage basin. *Adv. Water Resour.*, 32, 1255–1266., 2009.

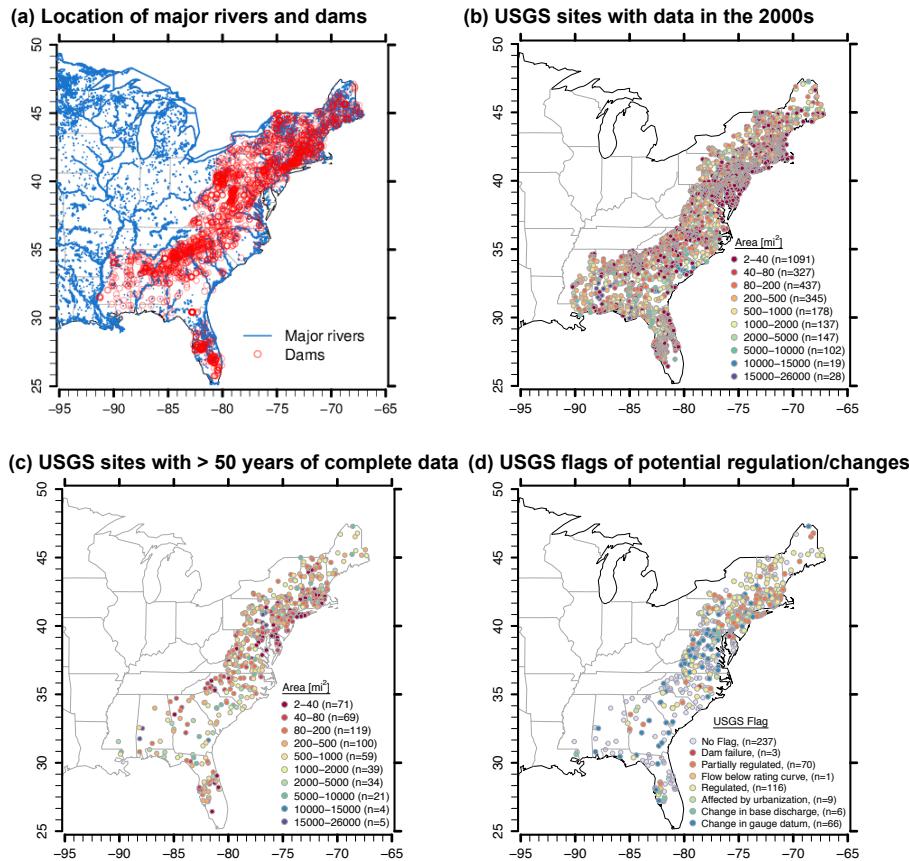
5

Walter, M. T., Wilks, D. S., Parlange, J.-Y., and Schneider, R. L.: Increasing evapotranspiration from the conterminous United States. *J. Hydrometeorol.*, 5, 405–408, doi:10.1175/1525-7541(2004)005<0405:IEFTCU>2.0.CO;2, 2004.

Nonstationarity of
low flows and their
timing in the eastern
US

S. Sadri et al.

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	


Nonstationarity of
low flows and their
timing in the eastern
US[Title Page](#)[Abstract](#)[Introduction](#)[Conclusions](#)[References](#)[Tables](#)[Figures](#)[◀](#)[▶](#)[◀](#)[▶](#)[Back](#)[Close](#)[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)**Table 1.** Comparison of the number of streamflow gauging sites in each category of the decomposition algorithm and their USGS flags for Q_1 and Q_{90} .

Category	Q_1	Q_{90}	Flag	Q_1	Q_{90}	Flag type	Q_1	Q_{90}
No Trend	221	334	Flagged	100	163	Damf	2	2
						RegPar	32	43
						Reg	32	61
						Urb	2	5
						ChangeDat	2	3
						ChangeDatH	30	49
			Not flagged	121	171			
Decreasing Trend	36	30	Flagged	12	7	RegPar	0	1
						Low	1	1
						Reg	1	1
						ChangeDat	1	0
						ChangeDatH	9	4
			Not Flagged	24	23			
Increasing Trend	57	68	Flagged	38	48	RegPar	11	11
						Reg	17	28
						Urb	1	2
						ChangeDat	1	0
						ChangeDatH	8	7
			Not Flagged	19	20			
Step Change	155	54	Flagged	99	37	DamF	1	1
						RegPar	23	10
						Reg	61	18
						Urb	5	2
						ChangeDat	1	2
						ChangeDatH	8	4
			Not Flagged	56	17			
Not categorized	39	22	Flagged	22	16	RegPar	4	5
						Reg	5	8
						Urb	1	0
						ChangeDat	1	1
						ChangeDatH	11	2
			Not Flagged	17	6			

DamF: dam failure; RegPar: partially regulated; Reg: regulated; Low: flow below rating curve limit; Urb: affected by urbanization; ChangeDat: Change base discharge; ChangeDatH: change gauge datum.

Nonstationarity of low flows and their timing in the eastern US

S. Sadri et al.

Figure 1. (a) Location of 2352 major dams in the eastern US. (b) Location of 2811 USGS streamflow gauging sites that are currently active, or became inactive after the year 2000. (c) Location of the 508 streamflow sites with 50 years or more of complete daily data. (d) Flagged sites according to the USGS.

Discussion Paper | Nonstationarity of low flows and their timing in the eastern US

S. Sadri et al.

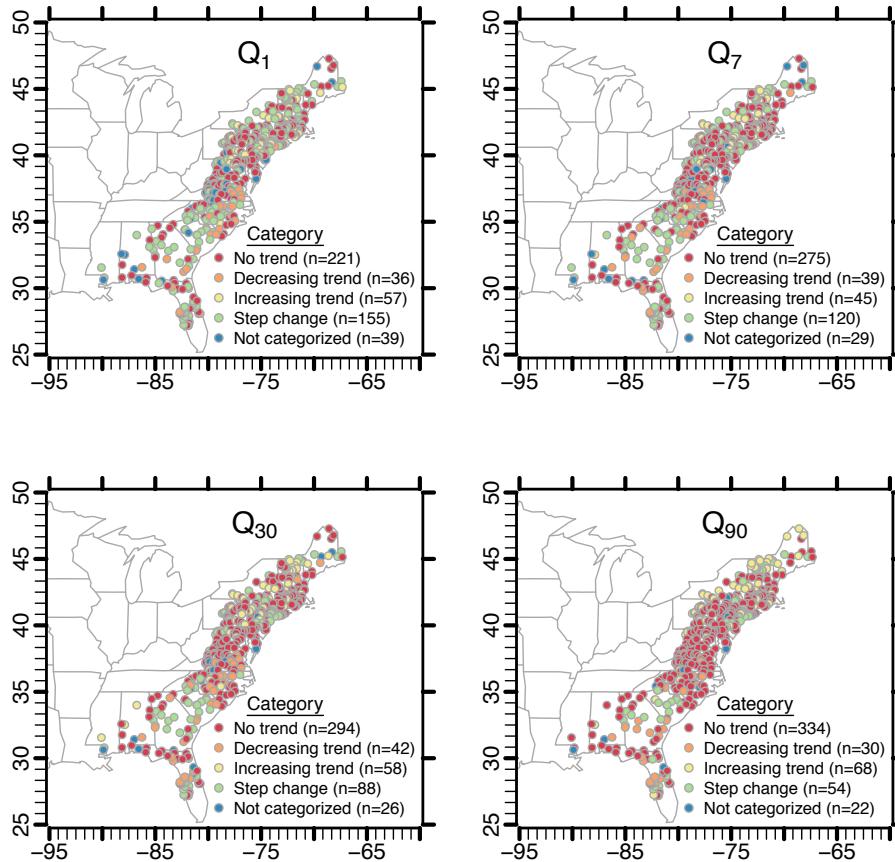
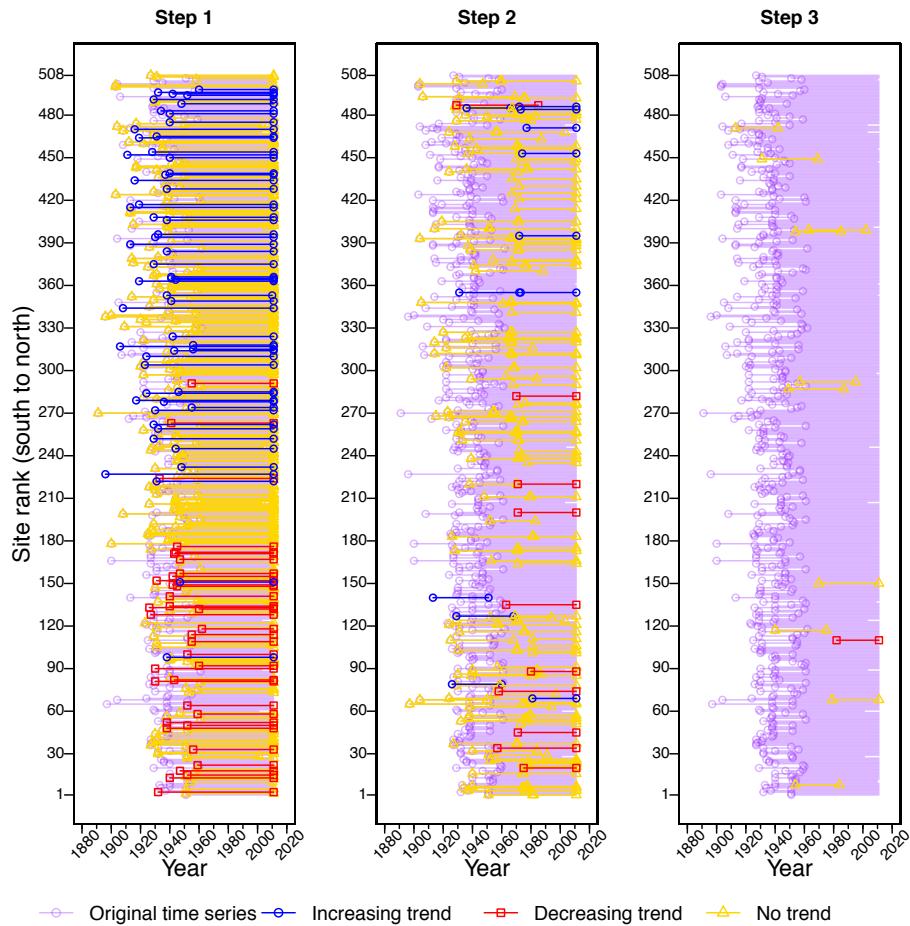



Figure 2. Categorization of non-stationarity of sites for Q_n .

Nonstationarity of low flows and their timing in the eastern US

S. Sadri et al.

- [Title Page](#)
- [Abstract](#) [Introduction](#)
- [Conclusions](#) [References](#)
- [Tables](#) [Figures](#)
- [◀](#) [▶](#)
- [◀](#) [▶](#)
- [Back](#) [Close](#)
- [Full Screen / Esc](#)
- [Printer-friendly Version](#)
- [Interactive Discussion](#)

Figure 3. Range of years for each site that are stationary or show a trend, for each step of the decomposition algorithm.

Nonstationarity of low flows and their timing in the eastern US

S. Sadri et al.

Title Page

Abstract

Introduction

Conclusion

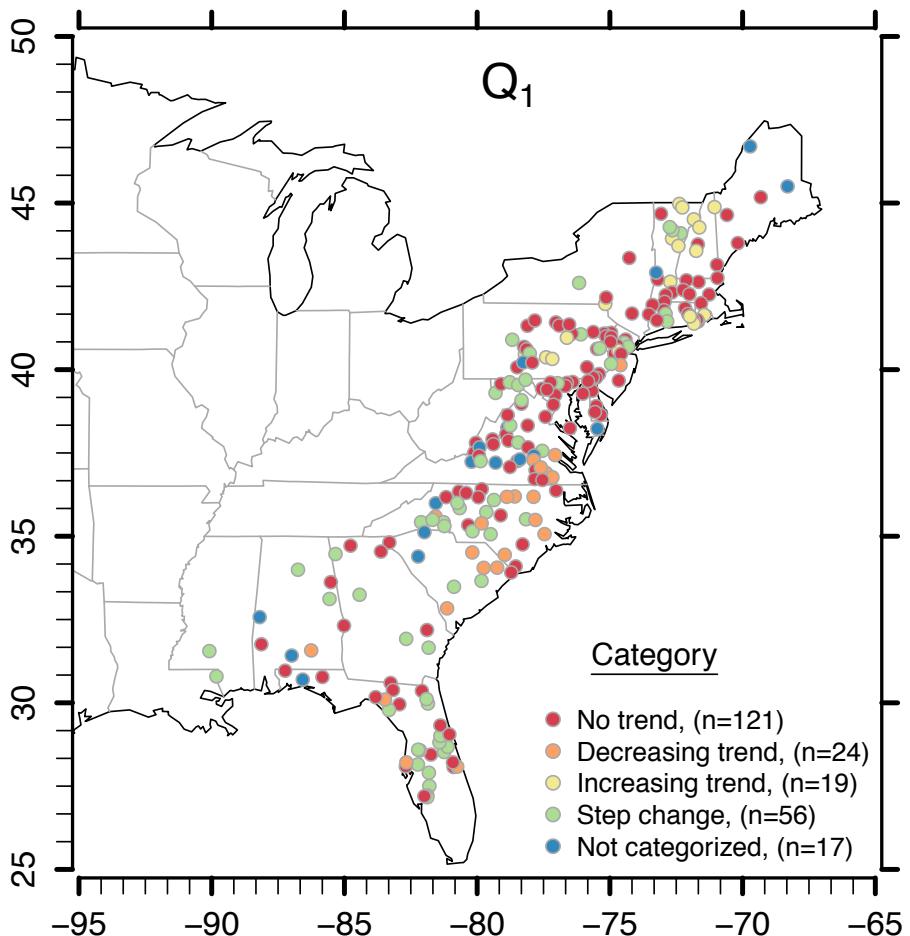
References

Tables

Figures

14

51


1

10

Books

Class

Full Screen / Esc

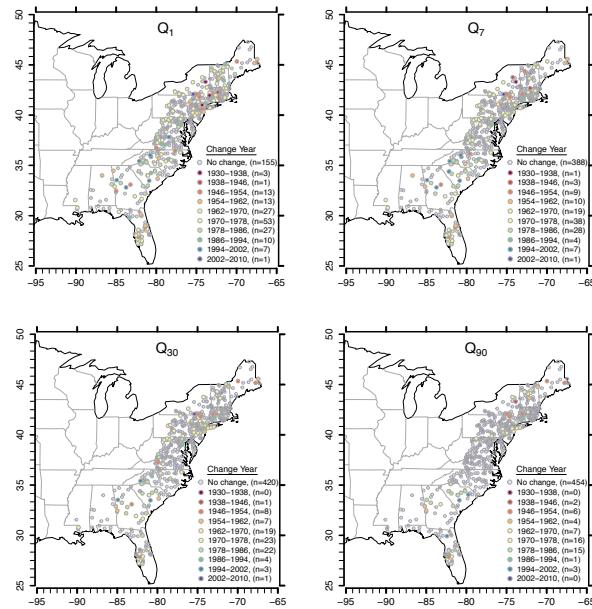


Figure 4. Categorization of non-stationarity of sites for Q_1 with no USGS flags.

Nonstationarity of low flows and their timing in the eastern US

S. Sadri et al.

(a) Year of step change across Q_n

(b) Agreement in year of step change across Q_n

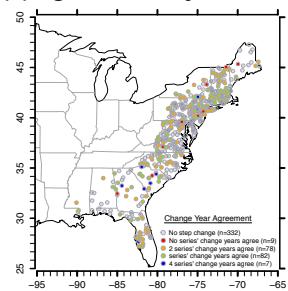


Figure 5. (a) Year of step change and (b) agreement across Q_n time series.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

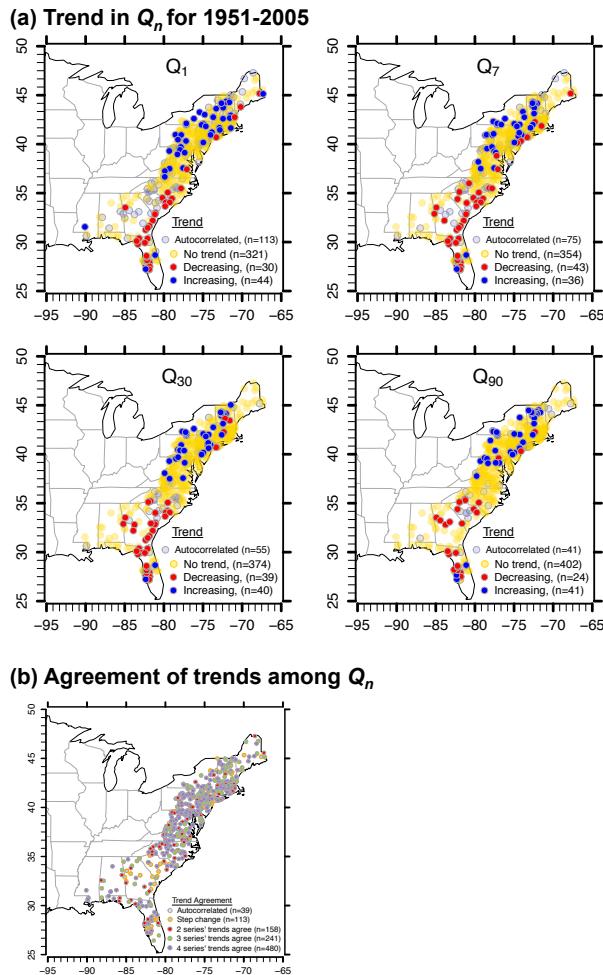
▶

◀

▶

[Back](#)

[Close](#)


[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Nonstationarity of low flows and their timing in the eastern US

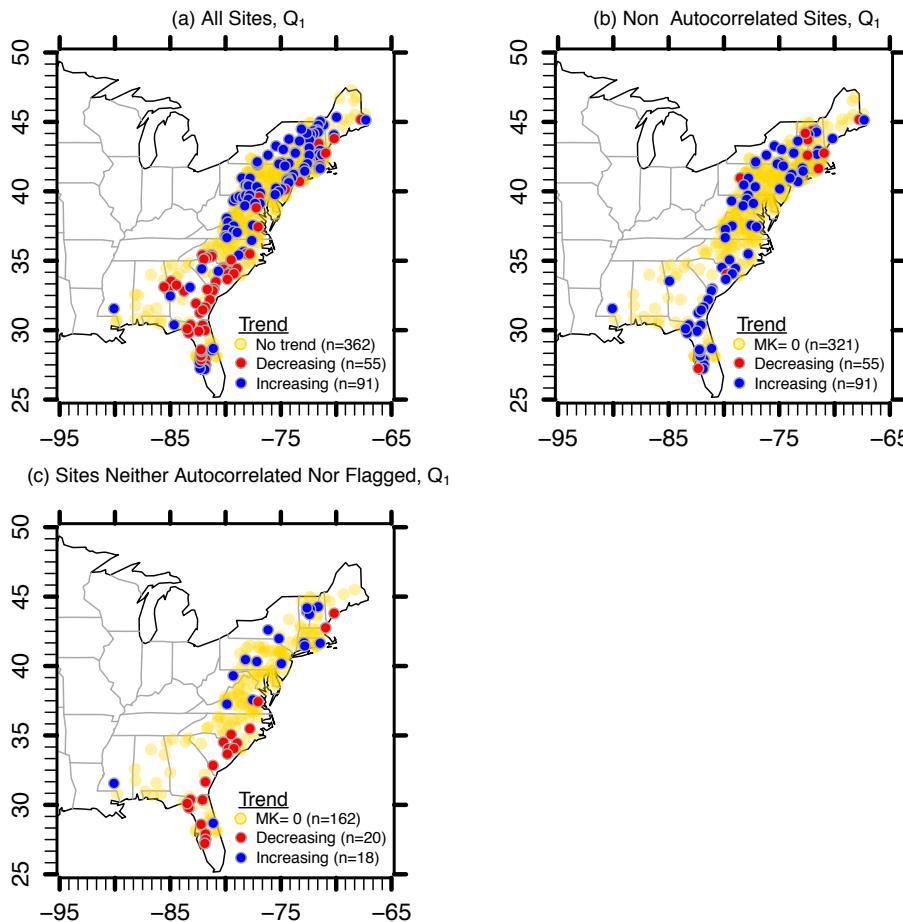

S. Sadri et al.

Figure 6. (a) Trends in Q_n for 1951–2005 and (b) their agreement.

Nonstationarity of low flows and their timing in the eastern US

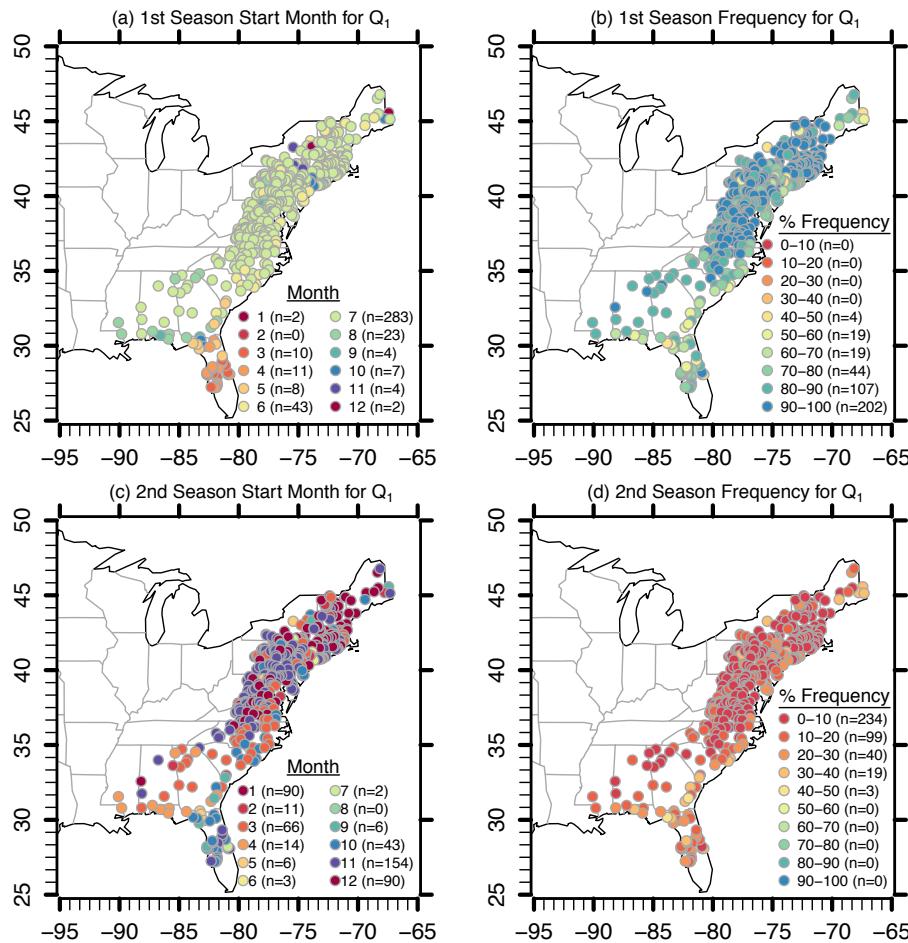

S. Sadri et al.

Figure 7. Trends in Q_1 for 1951–2005 with and without consideration of autocorrelation and USGS flags.

Nonstationarity of low flows and their timing in the eastern US

S. Sadri et al.

Figure 8. Primary and secondary seasons of occurrence of Q_1 low flows and their frequencies.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

[◀](#)

[▶](#)

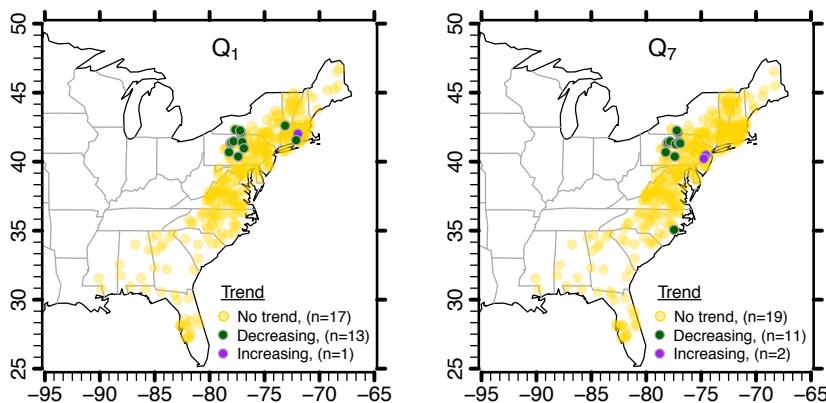
[◀](#)

[▶](#)

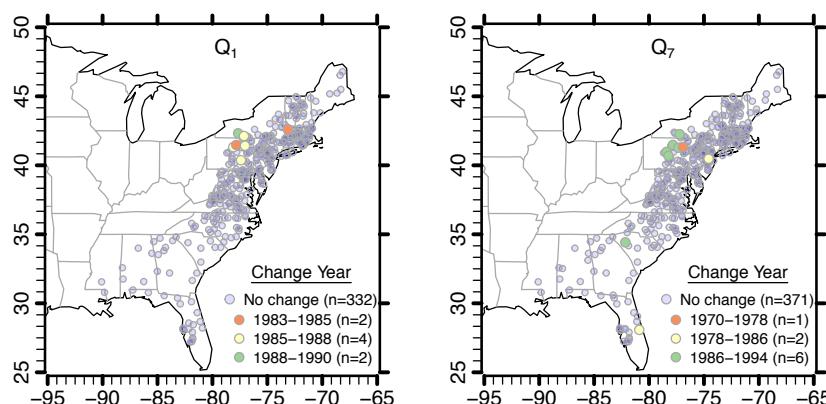
[Back](#)

[Close](#)

[Full Screen / Esc](#)


[Printer-friendly Version](#)

[Interactive Discussion](#)


Nonstationarity of low flows and their timing in the eastern US

S. Sadri et al.

(a) Trend in Low Flow Timing

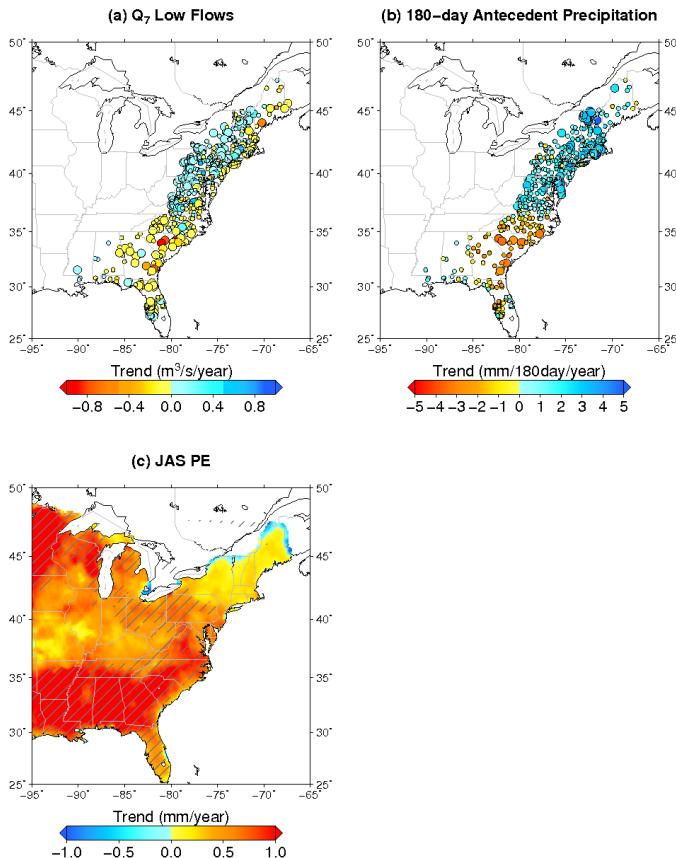

(b) Step Change in Low Flow Timing

Figure 9. (a) Trend in the onset time of the low flow season for Q_1 and Q_7 . Sites with statistically significant autocorrelation are not shown. (b) The year of step change in timing for Q_1 and Q_7 .

Nonstationarity of low flows and their timing in the eastern US

S. Sadri et al.

Figure 10. (a) Trend in Q_7 low flows for 1959–2005 for the warm season. **(b)** Corresponding trend in 180 day antecedent precipitation. For **(a)** and **(b)**, trends that are statistically significant at the 0.05 level are shown in large symbols. **(c)** Trend in July-August-September (JAS) potential evaporation for 1979–2012. Statistically significant trends are shown by hatching.